Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation

Circ Res. 1998 Feb 9;82(2):261-71. doi: 10.1161/01.res.82.2.261.

Abstract

Our objective in experiments reported here was to identify myofilament proteins of rat hearts either lost or degraded by cardiac ischemia (15- or 60-minute duration) with and without 45 minutes of reperfusion. We correlated these changes with alterations in myofilament sensitivity to Ca2+ and maximum force generation. Protein degradation and loss were assessed by high-performance liquid chromatography, SDS-PAGE, Western blotting analysis, and amino acid sequencing. Compared with nonischemic control hearts, bundles of skinned fibers from hearts subjected to ischemia alone demonstrated a decrease in maximum force generation and an increase in sensitivity to Ca2+. These changes in function were increased with the duration of the ischemia and with reperfusion. With increasing duration of ischemia, there was an increased loss and degradation of myofibrillar alpha-actinin and troponin I (TnI) at its C-terminus. Alpha-actinin and TnI were most susceptible to ischemia, but with 60 minutes of ischemia/reperfusion, there was also degradation of myosin light chain-1 (MLC1) involving a clip of residues 1 to 19. The MLC1 degradation product was detected in the reperfusion effluent (along with troponin T, tropomyosin, and alpha-actinin) but not in the tissue with 60 minutes of ischemia with no reperfusion. Moreover, with ischemia the following proteins became associated with the myofibrils: GAPDH and proteins of the mitochondrial ATP synthase complex. Our results provide new evidence regarding the mechanism by which ischemia/reperfusion causes myocardial injury and support the hypothesis that an important element in the injury is altered activity and structure of the myofilaments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Animals
  • Calcium / metabolism
  • Histological Techniques
  • In Vitro Techniques
  • Microfilament Proteins / metabolism*
  • Myocardial Ischemia / metabolism*
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardium / metabolism*
  • Osmolar Concentration
  • Rats

Substances

  • Microfilament Proteins
  • Calcium