Background: Visceroatrial heterotaxy syndrome is characterized by abnormality of visceral laterality and complex cardiovascular anomalies usually involving both the outflow and inflow tract. Morishima et al. (1995) showed that mouse embryos treated with all-trans retinoic acid at embryonic day 6.5 (primitive streak stage) induces this syndrome.
Methods: To investigate the morphogenetic process of visceroatrial heterotaxy syndrome, we examined retinoic acid-treated mouse embryos at embryonic days 9-15 using scanning electron microscopy.
Results: The sinoatrial connection was first distinguished for the determination of situs as early as at embryonic day 10.5. Normal visceroatrial situs was found in 57% of all treated embryos, and the rest had abnormal situs, in which right isomerism was found in 81%. In the right-isomeric mouse, the cardiac morphology was characterized by abnormal looping together with dysplasia of the inflow and outflow tract cushion; that is, the primitive right ventricle was usually deviated cranially to various degrees, the atrioventricular cushion appeared trilobed in a half of them, and unilateral ventricular hypoplasia was noted in about one-third of them after embryonic day 14.5.
Conclusions: An anomalous relation between the atrioventricular cushions and the interventricular septum appeared to have caused a restrictive inflow to the unilateral ventricle, leading to ventricular chamber hypoplasia on the ipsilateral side. Thus, we clarified that retinoic-acid treatment at the primitive streak stage disturbed cardiac looping and formation of atrioventricular cushion development, which secondarily influenced ventricular chamber development.