Nitric oxide (NO) is produced by inducible NO synthase (iNOS) after LPS stimulation, and reacts with superoxide to form peroxynitrite. We hypothesize that in LPS-induced lung injury, NO generated by iNOS plays a key role through the formation of peroxynitrite. We developed an acute lung injury dog model by injecting LPS, and examined the effects of selective iNOS inhibitors, aminoguanidine (AG) and S-methylisothiourea sulfate (SMT), on the LPS-induced lung injury. At 24 h after LPS injection, arterial oxygen tension and mean arterial pressure decreased, and shunt ratio and lung wet-to-dry weight ratio increased. On histology, the LPS group had marked neutrophil infiltration and widening of the alveolar septa. On immunohistochemistry, iNOS and nitrotyrosine, a major product of nitration of protein by peroxynitrite, were observed in the interstitium, capillary wall, and neutrophils in the airspaces of the LPS group. Treatments with AG and SMT prevented worsening of gas exchange, hemodynamics, and wet-to-dry weight ratio. On histology, AG and SMT treatments markedly suppressed lung injury, iNOS protein, and nitrotyrosine production. We conclude that NO released by iNOS may play a critical role in the pathogenesis of LPS-induced acute lung injury. This study suggests that iNOS inhibitors may have potential in the treatment of LPS-induced acute respiratory distress syndrome.