Loss of heterozygosity (LOH) at the mannose 6-phosphate/insulin-like growth factor 2 receptor gene locus (M6P/IGF2R) on 6q26-27 has recently been demonstrated in approximately 30% of both invasive and in situ breast cancers. LOH was coupled with somatic point mutations in the remaining allele in several instances, leading to the proposition that M6P/IGF2R is a tumor suppressor gene. Somatic mutations in M6P/IGF2R have also been described in hepatoma and gastrointestinal cancers with the replication error positive (RER+) phenotype. These data indicate that M6P/IGF2R loss of function mutations may be involved in the pathogenesis of a wide spectrum of malignancies. Extensive data on the normal function of the M6P/IGF2R suggest that loss of M6P/IGF2R activity may contribute to multiple aspects of tumor pathophysiology, including deregulated growth, apoptosis, angiogenesis and invasion.