Selective sensitization to DNA-damaging agents in a human rhabdomyosarcoma cell line with inducible wild-type p53 overexpression

Clin Cancer Res. 1998 Jan;4(1):145-52.

Abstract

Drug-induced cytotoxicity or apoptosis may be influenced by the expression of the p53 tumor suppressor gene and by the specific oncogene expressed, which may dictate the threshold at which a cytotoxic response may by induced. The objective of the study was to elucidate how DNA-damaging agents with different mechanisms of action were sensitized in the context of expression of the Pax3/FKHR fusion protein, a transformation event unique to alveolar rhabdomyosarcomas (ARMSs), and wild-type p53 (wtp53). A wtp53 cDNA was subcloned into the pGRE5-2/EBV vector with dexamethasone-inducible overexpression and transfected into Rh30 ARMS cells that express Pax3/FKHR and a mutant p53 phenotype. Following dexamethasone induction of wtp53 overexpression in a derived clone (Cl.#27), growth was slowed, and cells accumulated in G1. Functional wtp53 activity was demonstrated by selective transactivation of p50-2, a wtp53 chloramphenicol acetyltransferase reporter construct, and by up-regulated expression of endogenous p21Waf1. Data demonstrated p53-dependent sensitization (> or = 4-fold) to bleomycin, actinomycin D, and 5-fluorouracil and considerably less p53-dependence (< or = 2-fold) for doxorubicin, topotecan, etoposide, and cisplatin in Cl.#27 compared to an equivalent clone containing the pGRE5-EBV vector alone (VC#3). Data demonstrate that ARMS cells show a selective sensitization to DNA-damaging agents when wtp53 is overexpressed. The cytotoxic activity of agents that are not potentiated substantially must, therefore, depend upon p53-independent factors that relate to the mechanism of drug action.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • DNA / drug effects*
  • DNA Damage*
  • DNA-Binding Proteins / analysis
  • Humans
  • PAX3 Transcription Factor
  • Paired Box Transcription Factors
  • Rhabdomyosarcoma / drug therapy*
  • Rhabdomyosarcoma / metabolism
  • Rhabdomyosarcoma / pathology
  • Transcription Factors*
  • Tumor Cells, Cultured
  • Tumor Suppressor Protein p53 / analysis
  • Tumor Suppressor Protein p53 / physiology*

Substances

  • Antineoplastic Agents
  • DNA-Binding Proteins
  • PAX3 Transcription Factor
  • PAX3 protein, human
  • Paired Box Transcription Factors
  • Transcription Factors
  • Tumor Suppressor Protein p53
  • Pax3 protein, mouse
  • DNA