The transport across the cytoplasmic membrane and concomitant phosphorylation of mannitol in Escherichia coli is catalyzed by the mannitol-specific transport protein from the phosphoenolpyruvate-dependent phosphotransferase system, enzyme IImtl. Interactions between the cytoplasmic B and the membrane embedded C domain play an important role in the catalytic cycle of this enzyme, but the nature of this interaction is largely unknown. We have studied the thermodynamics of binding of (i) mannitol to enzyme IImtl, (ii) the substrate analog perseitol to enzyme IImtl, (iii) perseitol to phosphorylated enzyme IImtl, and (iv) mannitol to enzyme IImtl treated with trypsin to eliminate the cytoplasmic domains. Analysis of the heat capacity increment of these reactions showed that approximately 50-60 residues are involved in the binding of mannitol and perseitol, but far less in the phosphorylated state or after removal of the B domain. A model is proposed in which binding of mannitol leads to the formation of a contact interface between the two domains, either by folding of unstructured parts or by docking of preexisting surfaces, thus positioning the incoming mannitol close to the phosphorylation site on the B domain to facilitate the transfer of the phosphoryl group.