In neurons, synaptic vesicle exocytosis involves the formation of a core complex particle including syntaxin-1, synaptosomal-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)-2/synaptobrevin. The expression of these proteins was investigated in a panel of cell lines, including lines of endocrine and intestinal origin, by Western blotting and/or immunocytochemistry. The three core complex proteins were detected in the enteroendocrine, cholecystokinin (CCK)-secreting, cell lines STC-1 and GLUTag, and in the endocrine non-intestinal cell lines CA-77 and HIT-T15. In contrast, SNAP-25 and syntaxin-1 were undetected in the intestinal non-endocrine cell lines IEC-6, HT-29 and Caco-2, whereas a slight expression of VAMP-2 was documented in IEC-6 and HT-29 cells. Co-immunoprecipitation experiments indicated that syntaxin-1, SNAP-25 and VAMP-2 were present in a complex similar to that identified in brain. In the STC-1 cell line, treatment of streptolysin-O-permeabilized cells with tetanus toxin (Tetx) selectively cleaved VAMP-2 and VAMP-3/cellubrevin, and simultaneously abolished Ca2+-induced CCK secretion (IC50 approximately 12 nM). These results show that endocrine cell lines of intestinal origin express syntaxin-1, SNAP-25 and VAMP-2, and suggest a key role for a Tetx-sensitive protein (for example VAMP-2 and/or VAMP-3) in the CCK secretion by STC-1 cells.