Background: Recent data suggest that inhaled NO can inhibit platelet aggregation. This study investigates whether inhaled NO affects the expression level and avidity of platelet membrane receptors that mediate platelet adhesion and aggregation.
Methods and results: In 30 healthy volunteers, platelet-rich plasma was incubated with an air/5% CO2 mixture containing 0, 100, 450, and 884 ppm inhaled NO. ADP- and collagen-induced platelet aggregation, the membrane expression of P-selectin, and the binding of fibrinogen to the platelet glycoprotein (GP) IIb/IIIa receptor were determined before (t0) and during the 240 minutes of incubation. In addition, eight patients suffering from severe adult respiratory distress syndrome (ARDS) were investigated before and 120 minutes after the beginning of administration of 10 ppm inhaled NO. In vitro, NO led to a dose-dependent inhibition of both ADP-induced (3+/-3% at 884 ppm versus 70+/-6% at 0 ppm after 240 minutes; P<.001) and collagen-induced (13+/-5% versus 62+/-5%; P<.01) platelet aggregation. Furthermore, P-selectin expression (36+/-7% of t0 value; P<.01) and fibrinogen binding (33+/-11%; P<.01) were inhibited. In patients with ARDS, after two who did not respond to NO inhalation with an improvement in oxygenation had been excluded, an increase in plasma cGMP, prolongation of in vitro bleeding time, and inhibition of platelet aggregation and P-selectin expression were observed, and fibrinogen binding was also inhibited (19+/-7% versus 30+/-8%; P<.05).
Conclusions: NO-dependent inhibition of platelet aggregation may be caused by a decrease in fibrinogen binding to the platelet GP IIb/IIIa receptor.