STn (NeuAcalpha2 --> 6GalNAc alpha-O-Ser/Thr) is a carbohydrate epitope overexpressed in various human carcinomas. Clinical trials are underway using synthetic STn or STn trimeric glycopeptides [STn, cluster; STn(c)] conjugated with keyhole limpet hemocyanin (KLH) as active specific immunotherapy for these cancers. These vaccines have been prepared by conjugating a crotyl ethyl amide derivative of STn or STn(c) to KLH by direct reductive amination after ozonolysis. In the case of STn(c) the conjugation efficiency and the resulting epitope ratios were low. This may be due to steric hinderance of the short spacer arm. To overcome these difficulties, without resynthesis, the STn(c) glycopeptide was modified by attachment of an MMCCH (4-(4-N-maieimidomethyl) cyclohexane-1-carboxyl hydrazide) spacer arm to the aldehyde derivative, and then conjugated with thiolated KLH. This method gave a higher epitope ratio and yield than the direct method. The STn(c)-MMCCH-KLH conjugate induced high titer antibodies in mice against STn(c). This method may be generally applicable for large synthetic oligosaccharides.