The hepatic stellate cell (HSC), following a fibrogenic stimulus, is transformed from a quiescent to an activated cell. Cytokines induce NFkappaB activity in activated but not in quiescent HSCs with subsequent expression of NFkappaB-responsive genes, such as intercellular adhesion molecule (ICAM)-1 and interleukin (IL)-6. We investigated the effect of proteasome inhibitors and an IkappaB super-repressor on the cytokine mediated activation of NFkappaB, ICAM-1, and IL-6 in activated HSCs. Culture-activated HSCs were stimulated with IL-1beta or tumor necrosis factor alpha (TNFalpha) in the presence or absence of proteasome inhibitors, ALLN or MG-132, or after infection with an adenovirus expressing the IkappaB super-repressor (Ad5IkappaB) or beta-galactosidase (Ad5LacZ) as a control. NFkappaB activity was evaluated by immunofluorescence and by electrophoretic mobility shift assay. The steady state level of cytoplasmic IkappaB protein was measured by Western Blot. ICAM-1 and IL-6 expression was measured by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbant assay. Proteasome inhibitors, which block the degradation of IkappaB, and the Ad5IkappaB, which provides an exogenous nondegradable IkappaB, block the stimulation of NFkappaB activity by TNFalpha and IL-1beta in activated HSCs. These reagents block the subsequent nuclear translocation of p65 NFkappaB and induction of ICAM-1 and IL-6 by cytokines. The specificities of the proteasome inhibitors and the IkappaB super-repressor are demonstrated by their failure to block c-Jun N-terminal kinase induction by cytokines. Cytokine-induced stimulation of NFkappaB, ICAM-1, and IL-6 is blocked by proteasome inhibitors and Ad5IkappaB in activated HSCs. Inhibition of IkappaBalpha degradation is a potential target for anti-inflammatory therapy in the liver and might influence the activation process of HSCs following fibrotic stimuli.