Immunoisolation of allogeneic cells within a membrane-bound device is a unique approach for gene therapy. We employed an immunoisolation device that protects allograft, but not xenograft, cells from destruction, to implant a human fibroblast line (MSU 1.2) in athymic rodents. Cells, transduced with the MFG-human factor IX retroviral vector, and expressing 0.9 microg/10(6) cells/day in vitro, were implanted in rats (four 40-microl devices, each containing 2 x 10(7) cells, two subcutaneously, two in epididymal fat) and in mice (two 20-microl devices, each containing 2 x 10(6) cells, subcutaneously). Plasma factor IX levels increased for 50 days, reaching maxima of 203 ng/ml (rat) and 597 ng/ml (mouse), and both continued at greater than 100 ng/ml for more than 140 days. A clone derived from the transduced cells, making 5 microg of factor IX/10(6) cells/day, was implanted within a device (one 20-microl device containing 2.5 x 10(6) cells), or without a device (1 x 10(7) cells implanted freely), either subcutaneously or in epididymal fat. The freely implanted cells expressed transiently, reaching more than 100 ng/ml in each site by day 4, but dropped to zero by day 20 (subcutaneous) or day 90 (epididymal fat). In devices, levels gradually increased to 100 ng/ml (subcutaneous) or 300 ng/ml (epididymal fat), remaining high for more than 100 days. These results show long-term, high-level expression of a human protein: (1) when cells are implanted within a cell transplantation device, but not when the cells are freely implanted, and (2) from a transgene driven by a viral promoter. An alloprotective device will enable the use of cloned cell lines that can be subjected to stringent quality control assessment that is impossible to achieve with autologous approaches.