TFII-I enhances activation of the c-fos promoter through interactions with upstream elements

Mol Cell Biol. 1998 Jun;18(6):3310-20. doi: 10.1128/MCB.18.6.3310.

Abstract

The transcription factor TFII-I was initially isolated as a factor that can bind to initiator elements in core promoters. Recent evidence suggests that TFII-I may also have a role in signal transduction. We have found that overexpression of TFII-I can enhance the response of the wild-type c-fos promoter to a variety of stimuli. This effect depends on the c-fos c-sis-platelet-derived growth factor-inducible factor binding element (SIE) and serum response element (SRE). There is no effect of cotransfected TFII-I on the TATA box containing the c-fos basal promoter. Three TFII-I binding sites can be found in c-fos promoter. Two of these overlap the c-fos SIE and SRE, and another is located just upstream of the TATA box. Mutations that distinguish between serum response factor (SRF), STAT, and TFII-I binding to the c-fos SIE and SRE suggest that the binding of TFII-I to these elements is important for c-fos induction in conjunction with the SRF and STAT transcription factors. Moreover, TFII-I can form in vivo protein-protein complexes with the c-fos upstream activators SRF, STAT1, and STAT3. These results suggest that TFII-I may mediate the functional interdependence of the c-fos SIE and SRE elements. In addition, the ras pathway is required for TFII-I to exert its effects on the c-fos promoter, and growth factor stimulation enhances tyrosine phosphorylation of TFII-I. These results indicate that TFII-I is involved in signal transduction as well as transcriptional activation of the c-fos promoter.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Binding Sites
  • DNA / metabolism
  • DNA-Binding Proteins / metabolism*
  • Epidermal Growth Factor / metabolism
  • Mice
  • Promoter Regions, Genetic*
  • Proto-Oncogene Proteins c-fos / genetics*
  • STAT1 Transcription Factor
  • STAT3 Transcription Factor
  • TATA Box
  • Trans-Activators / metabolism
  • Transcription Factors / metabolism*
  • Transcriptional Activation*

Substances

  • DNA-Binding Proteins
  • Proto-Oncogene Proteins c-fos
  • STAT1 Transcription Factor
  • STAT3 Transcription Factor
  • Stat1 protein, mouse
  • Stat3 protein, mouse
  • Trans-Activators
  • Transcription Factors
  • Epidermal Growth Factor
  • DNA