Shear stress dilates blood vessels and exerts an antiproliferative effect on vascular walls. These effects are ascribed to shear stress-induced, endothelium-derived vasoactive substances. Endothelin-converting enzymes (ECEs), the enzymes that convert big endothelin-1 (ET-1) to ET-1, have recently been isolated and the corresponding proteins have been termed ECE-1 and ECE-2. Furthermore, two isoforms of human ECE-1 have been demonstrated and termed ECE-1 alpha and ECE-1 beta. In this study, to elucidate the role of ECE-1 under shear stress we examined the effect of physiologic shear stress on the mRNA expression of ECE-1 and ET-1 in cultured bovine carotid artery endothelial cells (BAECs) and human umbilical veins (HUVECs), and also ECE-1 alpha mRNA expression in HUVECs. ECE-1 mRNA expression was significantly downregulated by shear stress in 24 h, both in BAECs and HUVECs, in a shear stress intensity-dependent manner. The expression of ECE-1 alpha mRNA was also attenuated by shear stress in HUVECs. ET-1 mRNA expression showed a concordant decrease with ECE-1 mRNA expression. These results suggest that shear stress-induced gene regulation of ET-1 and ECE-1 mRNA expression can contribute to the decrease of ET-1 peptide level by shear stress.