Multicolor fluorescence in situ hybridization with a whole chromosome composite probe for the X-chromosome and microdissection probes for the Xp and Xq arms, as well as for the Xp terminal, Xq terminal, and X centromer specific subregional probes, was applied to three-dimensional (3D) preserved human female amniotic fluid cell nuclei. Confocal laser scanning microscopy and three-dimensional image analysis demonstrated distinctly separated Xp arm and Xq arm domains. 3D distance measurements revealed a high variability of intrachromosomal distances between Xpter, Xcen, and Xqter specific probes within both X territories. A 3D distance measurement error of +/- 70 nm was found in control experiments using quartz glass microspheres labeled with different fluorochromes. Our data argue against the hypothesis of Walker et al. (1991, Proc. Natl. Acad. Sci. USA 88, 6191-6195) that a looped structure of the inactive X territory is formed by tight telomere-telomere associations.