The sparing of extraocular muscle in dystrophinopathy is lost in mice lacking utrophin and dystrophin

J Cell Sci. 1998 Jul:111 ( Pt 13):1801-11. doi: 10.1242/jcs.111.13.1801.

Abstract

The extraocular muscles are one of few skeletal muscles that are structurally and functionally intact in Duchenne muscular dystrophy. Little is known about the mechanisms responsible for differential sparing or targeting of muscle groups in neuromuscular disease. One hypothesis is that constitutive or adaptive properties of the unique extraocular muscle phenotype may underlie their protection in dystrophinopathy. We assessed the status of extraocular muscles in the mdx mouse model of muscular dystrophy. Mice showed mild pathology in accessory extraocular muscles, but no signs of pathology were evident in the principal extraocular muscles at any age. By immunoblotting, the extraocular muscles of mdx mice exhibited increased levels of a dystrophin analog, dystrophin-related protein or utrophin. These data suggest, but do not provide mechanistic evidence, that utrophin mediates eye muscle protection. To examine a potential causal relationship, knockout mouse models were used to determine whether eye muscle sparing could be reversed. Mice lacking expression of utrophin alone, like the dystrophin-deficient mdx mouse, showed no pathological alterations in extraocular muscle. However, mice deficient in both utrophin and dystrophin exhibited severe changes in both the accessory and principal extraocular muscles, with the eye muscles affected more adversely than other skeletal muscles. Selected extraocular muscle fiber types still remained spared, suggesting the operation of an alternative mechanism for muscle sparing in these fiber types. We propose that an endogenous upregulation of utrophin is mechanistic in protecting extraocular muscle in dystrophinopathy. Moreover, data lend support to the hypothesis that interventions designed to increase utrophin levels may ameliorate the pathology in other skeletal muscles in Duchenne muscular dystrophy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cytoskeletal Proteins / deficiency
  • Cytoskeletal Proteins / genetics*
  • Dystrophin / deficiency
  • Dystrophin / genetics*
  • Membrane Proteins / deficiency
  • Membrane Proteins / genetics*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred mdx
  • Mice, Knockout
  • Muscle, Skeletal / abnormalities
  • Muscle, Skeletal / pathology*
  • Muscle, Skeletal / ultrastructure
  • Muscular Dystrophy, Animal / genetics*
  • Muscular Dystrophy, Animal / pathology*
  • Oculomotor Muscles / pathology
  • Up-Regulation / genetics
  • Utrophin

Substances

  • Cytoskeletal Proteins
  • Dystrophin
  • Membrane Proteins
  • Utrn protein, mouse
  • Utrophin