Diabetes and dyslipidemia. A new model for transplant coronary artery disease

Circulation. 1998 Jun 2;97(21):2160-8. doi: 10.1161/01.cir.97.21.2160.

Abstract

Background: Clinical observations suggest that transplant coronary artery disease (TxCAD) is immunologically mediated but may be accelerated by metabolic derangements. We developed a rat model of heterotopic heart transplantation in the presence of diabetes and dyslipidemia to further study their role in TxCAD development.

Methods and results: Major histocompatibility complex-mismatched strains of inbred rats underwent heterotopic heart transplantation (ACI-to-Lewis allografts). Diabetes (DM) was induced by streptozotocin injection (80 mg/kg) after transplantation; dyslipidemia was worsened by feeding of a 60% high-fructose diet (+F). Allograft transplants were divided into four groups: (1) +DM/+F; (2) +DM/-F; (3) -DM/+F; and (4) -DM/-F. Isograft transplants (Lewis to Lewis, +DM/+/-F) were controls. All animals received daily cyclosporine (5 mg/kg). Grafts surviving > 30 days were evaluated for TxCAD on histological sections and graded 0 to 5 for intimal thickness. All streptozotocin-treated animals were diabetic within 2 weeks, with fourfold increases in plasma glucose concentrations versus nondiabetics. Severe TxCAD was observed in diabetic allografts only. The mean grade of TxCAD in diabetic allografts was 3.2 +/- 0.5 versus 1.1 +/- 0.4 in diabetic isografts (P < 0.03) and zero TxCAD in nondiabetic allografts (P < or = 0.0001). Fructose feeding resulted in a 1.5-fold higher triglyceride and a 1.3-fold higher cholesterol level versus the regular diet (-F) but showed no independent contribution to the development of TxCAD.

Conclusions: These findings suggest that metabolic derangements associated with diabetes play an important role in TxCAD development in heterotopic ACI-to-Lewis rat heart transplantation. In this model of TxCAD in major histocompatibility complex-mismatched, diabetic, and dyslipidemic rats, immunologic and metabolic mechanisms that contribute to TxCAD can be further delineated and approaches to its prevention assessed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Body Weight
  • Coronary Disease / etiology*
  • Diabetes Mellitus, Experimental / complications*
  • Disease Models, Animal
  • Fructose / pharmacology
  • Graft Rejection
  • Heart Transplantation / adverse effects*
  • Lipids / blood*
  • Male
  • Rats
  • Rats, Inbred ACI
  • Rats, Inbred Lew
  • Streptozocin

Substances

  • Lipids
  • Fructose
  • Streptozocin