To define how the signaling pathways that mediate the B cell receptor (BCR) death pathway differ from those responsible for CD95/Fas-mediated death, we compared the BCR and Fas death pathways in two human B cell lines, B104 and BJAB. Both BCR- and Fas-induced apoptosis are blocked by the peptide cysteine protease inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD (mlz)), demonstrating a common requirement caspase activity. Despite this common characteristic, the ability of actinomycin D and cycloheximide to block BCR-induced apoptosis, but not apoptosis induced by Fas cross-linking, suggests that a major difference between these two pathways is their differential requirements for new gene and protein synthesis. BCR- and Fas-mediated apoptosis are both accompanied by activation of stress-activated protein kinase and p38 mitogen-activated protein kinase (MAPK). Activation of both stress-activated protein kinase and p38 MAPK was inhibited by ZVAD (mlz), suggesting the involvement of caspases. To determine the role of p38 MAPK activation in BCR- and Fas-induced apoptosis, we employed SB203580, a specific inhibitor of p38 MAPK. SB203580 inhibited BCR-induced apoptosis, but not apoptosis induced by cross-linking Fas. Furthermore, both actinomycin D and SB203580 inhibited BCR-induced, but not Fas-induced, activation of caspase. Collectively, these findings establish a role for p38 MAPK in BCR-induced apoptosis both upstream and downstream of caspase activity. The p38 MAPK pathway may function to regulate transcriptional or translational events that are critical for BCR-induced apoptosis.