We investigated the role of platelets in human melanoma cell (line 397) interaction with vascular endothelial cells (ECs) under flow conditions. The ability of the tumour cells to adhere to the EC monolayer was significantly reduced by application of flow at a shear rate of 250 s(-1). A 2.2-fold increase in tumour cell adhesion to ECs under flow was observed upon addition of thrombin receptor agonist peptide (TRAP)-activated platelets but not resting platelets. A similar increase (2.5-fold) in tumour cell adhesion to ECs under flow was observed when the tumour cells were incubated with resting platelets on thrombin-treated ECs. However, thrombin treatment of the ECs alone had no effect on tumour cell adhesion in the absence of platelets. The enhancement of tumour cell adhesion to ECs by TRAP-activated platelets was virtually abolished by blockade of the platelet glycoproteins P-selectin and GPIIb-IIIa by monoclonal antibodies. Blockade of P-selectin also inhibited the direct adhesion of TRAP-activated platelets to ECs, but did not affect the interaction of the tumour cells with platelets immobilized on subendothelial extracellular matrix (ECM). Blockade of GPIIb-IIIa inhibited both platelet-EC and platelet-tumor cell interactions. Our results indicate that tumour cell adhesion to the endothelium under flow is enhanced by platelets under conditions that allow platelet adhesion to ECs. Inhibition studies suggest that activated platelet adhesion to ECs is mediated by P-selectin and GPIIb-IIIA, and tumour cell adhesion to EC-bound platelets--mainly by GPIIb-IIIa.