The expression of apolipoprotein (apo) B can be modulated by mRNA editing, a unique posttranscriptional base change in the apo B mRNA. Apo B-48, the translation product of edited apo B mRNA, is not a precursor of the atherogenic low density lipoproteins and lipoprotein(a). In humans and various other mammals, the apo B mRNA is edited in the intestine but not in the liver, which exclusively secretes apo B-100-containing lipoproteins as precursors for low density lipoprotein formation. In species such as the rat, mouse, dog, and horse, apo B mRNA is also edited in the liver, resulting in low plasma levels of low density lipoprotein. Editing of the apo B mRNA is mediated by the apo B mRNA-editing enzyme complex, of which the catalytic subunit APOBEC-1 is not expressed in the liver of species without hepatic editing. To understand the molecular basis for liver-specific expression of APOBEC-1 and the editing of hepatic apo B mRNA, the expression pattern and genomic organization of the rat APOBEC-1 gene have been characterized. The rat APOBEC-1 gene contains 6 exons and 2 promoters with distinct activities. The expression of APOBEC-1 in the rat liver is the result of a promoter located upstream, with tissue-specific exon use and alternate splicing within the 5'-untranslated region of APOBEC-1 mRNA encoded by exon 2. In addition to the liver, this promoter also induces APOBEC-1 expression in the spleen, lung, kidney, heart, and skeletal muscle. The promoter located downstream belongs to a new class of TATA-less promoters and is responsible for the abundant expression of APOBEC-1 in the intestine. Mapping of the transcriptional start sites and deletion analysis of the promoter regions by using luciferase as the reporter gene have defined the regulatory elements of both promoters. The downstream, intestine-specific promoter contains a negative regulatory element between -1100 and -500, which appears to restrict its activity to the intestine. The upstream, liver-specific promoter of the rat APOBEC-1 gene induces APOBEC-1 expression and editing of apo B mRNA in human hepatoma HuH-7 and Hep G2 cells. Understanding the molecular basis for the liver-specific expression of APOBEC-1 in the rat promises new strategies to induce APOBEC-1 expression in the human liver for the reduction of atherogenic lipoprotein levels by hepatic apo B mRNA editing.