The interaction between macrophages and oxidatively modified low density lipoprotein (Ox-LDL) appears to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the induction of numerous cytokines and growth factors. The current study demonstrated that Ox-LDL upregulated vascular endothelial growth factor (VEGF) mRNA expression in RAW 264 cells, a monocytic cell line, in a time- and concentration-dependent manner and that Ox-LDL stimulated VEGF protein secretion from the cells. Lysophosphatidylcholine, a component of Ox-LDL, also enhanced VEGF mRNA expression in RAW 264 cells and VEGF secretion from RAW 264 cells, with a maximal effect at a concentration of 10 micromol/L lysophosphatidylcholine. Immunohistochemical studies showed that human early atherosclerotic lesions exhibited intense VEGF immunoreactivity in subendothelial macrophage-rich regions of the thickened intima. In atherosclerotic plaques, VEGF staining was also observed in foam cell-rich regions adjacent to the lipid core or the neovascularized basal regions of plaque consisting predominantly of smooth muscle cells. High-power-field observation revealed that VEGF was localized in the extracellular space as well as at the macrophage cell surface. These observations suggest the possible involvement of Ox-LDL in the development of human atherosclerosis through VEGF induction in macrophages.