Class V unconventional myosins are two-headed, nonfilamentous, actin-based mechanoenzymes that appear to be expressed ubiquitously. Mice possess at least two myosin V heavy chain genes (dilute and myr6) whose approximately 190 kDa protein products are referred to as myosin Va and Vb, respectively. Using antibodies that are specific for the Va isoform and immunofluorescence microscopy, we show here that myosin Va localizes to the microtubule organizing center (MTOC) in interphase cells, and to the mitotic asters, spindle, and midbody of dividing cells. These associations, which in the case of mitotic cells are characterized by the concentration of myosin Va in the immediate vicinity of the microtubules, were observed in a variety of cell types, including primary and immortal mouse melanocytes and fibroblasts, Hela cells, and Cos cells. Importantly, these associations were not observed in melanocytes and fibroblasts cultured from dilute null mice, indicating that the staining of these microtubule-rich domains was due to the presence of myosin Va, as opposed to another protein(s) containing a shared epitope(s) with myosin Va. When cells were extracted with detergent prior to fixation, myosin Va remained associated with each of these microtubule-rich domains, suggesting that these associations are not due to the possible presence of membranes at these sites. This fact, and our observation that these microtubule-rich domains contain little if any F-actin (based on phalloidin staining), suggest that myosin Va may bind to microtubules either directly or through a microtubule-associated protein. Finally, we found that dilute null fibroblasts in primary culture are twice as likely to be binucleate as wild type fibroblasts of the same genetic background (35% vs. 17%). Together, these results indicate that myosin Va associates with microtubule-rich domains in both interphase and dividing cells, and plays a role in the efficiency of cell division in culture.