The synthesis of a new series of 5-or 6-methyl-2-(2,4-disubstituted phenyl) benzoxazoles (4, 5) is described in order to determine their antimicrobial activities and feasible structure-activity relationships. The synthesized compounds were tested in vitro against three Gram-positive bacteria, three Gram-negative bacteria and the yeast Candida albicans, in comparison with several control drugs. Microbiological results exhibited that the synthesized compounds possess a broad spectrum of antibacterial activity against the tested microorganisms. The compounds 4b and 4c indicated some antibacterial activity against Staphylococcus aureus having a minimum inhibitory concentration (MIC) of 12.5 micrograms/ml. Moreover, the compound 5a revealed a significant antibacterial activity against the enterobacter Pseudomonas aeruginosa showing a MIC value of 25 micrograms/ml, i.e. more potent than the control drugs tetracycline and streptomycin. For the antimycotic activity against the yeast C. albicans, the derivative 4c was found to be more active than the other synthesized compounds with a MIC value of 12.5 micrograms/ml, but one-fold less potent than the control drugs oxiconazole and haloprogin.