Characterisation of the glass transition of an amorphous drug using modulated DSC

Pharm Res. 1998 Jul;15(7):1117-21. doi: 10.1023/a:1011902816175.

Abstract

Purpose: The use of modulated differential scanning calorimetry (MDSC) as a novel means of characterising the glass transition of amorphous drugs has been investigated, using the protease inhibitor saquinavir as a model compound. In particular, the effects of measuring variables (temperature cycling, scanning period, heating mode) have been examined.

Methods: Saquinavir samples of known moisture content were examined using a TA Instruments 2920 MDSC at a heating rate of 2 degrees C/min and an amplitude of +/-0.159 degrees C with a period of 30 seconds. These conditions were used to examine the effects of cycling between - 50 degrees C and 150 degrees C. A range of periods between 20 and 50 seconds were then studied. Isothermal measurements were carried out between 85 degrees C and 120 degrees C using an amplitude of +/-0.159 degrees C with a period of 30 seconds.

Results: MDSC showed the glass transition of saquinavir (0.98 +/- 0.05%w/w moisture content) in isolation from the relaxation endotherm to give an apparent glass transition temperature of 107.0 degrees C +/- 0.4 degrees C. Subsequent temperature cycling gave reproducible glass transition temperatures of approximately 105 degrees C for both cooling and heating cycles. The enthalpic relaxation peak observed in the initial heating cycle had an additional contribution from a Tg "shift" effect brought about by the difference in response to the glass transition of the total and reversing heat flow signals. Isothermal studies yield a glass transition at 105.9 degrees C +/- 0.1 degrees C.

Conclusions: MDSC has been shown to be capable of separating the glass transition of saquinavir from the relaxation endotherm, thereby facilitating measurement of this parameter without the need for temperature cycling. However, the Tg "shift" effect and the number of modulations through the transition should be taken into account to avoid drawing erroneous conclusions from the experimental data. MDSC has been shown to be an effective method of characterising the glass transition of an amorphous drug, allowing the separate characterisation of the Tg and endothermic relaxation in the first heating cycle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calorimetry, Differential Scanning / methods*
  • Chemical Phenomena
  • Chemistry, Pharmaceutical
  • Chemistry, Physical
  • Glass / chemistry
  • HIV Protease Inhibitors / chemistry*
  • Saquinavir / chemistry*
  • Temperature
  • Time Factors

Substances

  • HIV Protease Inhibitors
  • Saquinavir