Hepatocyte growth factor (HGF)/scatter factor (SF) is a multifunctional factor that stimulates epithelial cell motility, invasion and morphogenesis. Its receptor is a transmembrane tyrosine kinase encoded by the Met proto-oncogene. Several studies have suggested a possible role for HGF/Met in tumor development and progression. To investigate the potential roles of Met in human lung cancer biology, we have studied the mRNA and protein expression of Met in normal lung tissue, primary non-small cell lung carcinoma (NSCLC), and NSCLC cell lines. The results indicated a differential pattern of Met expression among various subtypes of NSCLC. The majority of squamous cell carcinoma (SQCC), either in vivo or in vitro, expressed Met mRNA and its protein product at levels much lower than or similar to normal lung tissue or bronchial epithelium. Moreover, SQCC characteristically over-expressed a variant Met mRNA which corresponds to a 5' partially deleted transcript produced by alternative splicing. In contrast, the expression of Met mRNA and its protein product in adenocarcinoma (ADC) and large cell undifferentiated carcinoma were more heterogeneous. Overexpression was demonstrated in approximately 35% and 20% of these subtypes of NSCLC, respectively. Among ADC, intermediate to high levels of Met immunoreactivity correlated with greater degree of tumor differentiation. Furthermore, an accentuation of Met immunoreactivity was often noted in cancer cells at the advancing edge of tumors. These findings support a role for Met in lung cancer cell invasion and differentiation in vivo, but its expression and functions may be modified by the differentiation phenotype of the tumor cells.