Quantification of myocardial perfusion by MRI after coronary occlusion

Magn Reson Med. 1998 Aug;40(2):287-97. doi: 10.1002/mrm.1910400215.

Abstract

The objectives of this study were to define the relationship between the first order constant of Gd-DTPA transfer (K1) and the myocardial blood flow (MBF) at rest and to compare it with an equivalent relationship obtained for positron emission tomography (PET). In a canine model of permanent coronary occlusion (n = 4), myocardial and blood time concentration curves obtained by 13N-ammonia PET and Gd-DTPA-enhanced MRI were fitted by a one-compartment model to determine K1. A linear relationship was observed between MRI-derived K1 and MBF measured by microspheres (K1 = 0.88 x flow -0.015, R = 0.95), which compares favorably with the equivalent relationship derived from PET (K1 = 0.74 x flow +0.16, R = 0.88). The results of this preliminary study suggest that, at rest and distal to a permanently occluded coronary artery, myocardial perfusion quantification by MRI is possible and can challenge PET.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Flow Velocity / physiology
  • Contrast Media*
  • Coronary Circulation / physiology*
  • Dogs
  • Gadolinium DTPA*
  • Image Enhancement*
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging*
  • Myocardial Infarction / diagnosis*
  • Myocardium / pathology
  • Regional Blood Flow / physiology
  • Tomography, Emission-Computed

Substances

  • Contrast Media
  • Gadolinium DTPA