Previous studies on the regulation of c-myc have focused on the transcriptional control of this proto-oncogene. We have investigated the signalling pathways involved under circumstances in which there is a translational upregulation in the levels of c-myc protein. We have demonstrated an up to tenfold serum-dependent increase of c-myc protein levels in Epstein-Barr virus immortalized B-cell lines 2-4 h after disruption of cellular aggregates, which is not accompanied by an equivalent increase in mRNA. Overall protein synthesis rates only increased threefold suggesting that the c-myc message was being selectively translated. We observed increases in the phosphorylation of p70 and p85 S6 kinases and of initiation factor eIF-4E binding protein 1 (4E-BP1) 1-2 h after stimulation, suggesting activation of the FRAP/TOR signalling pathway. The increased phosphorylation of 4E-BP1 led to a decrease in its association with eIF-4E and an increase in its association with the eIF-4G component of the eIF-4F initiation complex. The signalling inhibitors rapamycin and wortmannin blocked the phosphorylation of 4E-BP1 and abolished the translational component of the c-myc response. Our data suggest that dissociation of eIF-4E from 4E-BP1, leading to an increase in the formation of the eIF-4F initiation complex, relieves the translation repression imposed on the c-myc mRNA by its structured 5'UTR.