The 2;13 chromosomal translocation in alveolar rhabdomyosarcoma generates the chimeric protein PAX3-FKHR, which is a powerful transcriptional activator. We hypothesize that PAX3-FKHR regulates downstream effector genes involved in rhabdomyosarcoma tumorigenesis. We evaluated alterations in expression of MET and neural cell adhesion molecule that were proposed previously as downstream targets of wild-type PAX3. We used a myogenic tumor cell culture system and rhabdomyosarcoma tumor specimens to assess candidate gene expression in relationship to various PAX3-FKHR expression levels. We demonstrate that the expression of MET, but not neural cell adhesion molecule, correlates significantly with PAX3-FKHR expression. These findings indicate that MET, which encodes a receptor involved in growth and motility signaling, is a downstream target of PAX3-FKHR in alveolar rhabdomyosarcoma.