The effect of chronic cocaine exposure on the central serotonergic system in the rat was investigated using a selective 5-HT1A receptor agonist, [3H]8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT), and a 5-HT2A receptor antagonist, [3H]ketanserin, as tritiated ligands in a quantitative autoradiography study. Rats were administered cocaine in a "binge" pattern, 15 mg/kg/injection, three times a day, at 1-h intervals for 14 days to mimic the pattern often seen in human cocaine addicts. A significant decrease in the binding of [3H]8-OH-DPAT was found in the ventromedial hypothalamus (P < 0.001) and the dorsal dentate gyrus (P < 0.01) in rats administered cocaine as compared with rats injected with saline. No significant difference in the binding of [3H]ketanserin was found in frontal, parietal, agranular insular, and piriform cortices, caudate-putamen, olfactory tubercle, nucleus accumbens, thalamus, septohippocampal nucleus, and claustrum. Several studies have shown that 5-HT1A receptor agonists have antidepressant properties. Other studies, in animal models, have shown that 5-HT1A receptor agonists stimulate the hypothalamic-pituitary-adrenal axis, which is of interest, since chronic activation of this axis has been related to anxiety and depression. Our data show that the 5-HT1A component of the serotonergic system is altered following chronic "binge" pattern cocaine administration in an animal model and may be related to changes in the HPA axis and behavior.