The effects of 21-day treatment with the acetylcholinesterase inhibitors metrifonate (80 mg kg(-1) per os (p.o.)) and tacrine (3 mg kg(-1) p.o.), twice daily, on cortical and hippocampal cholinergic systems were investigated in aged rats (24-26 months). Extracellular acetylcholine levels were measured by transversal microdialysis in vivo; choline acetyltransferase and acetylcholinesterase activities were measured ex vivo by means of radiometric methods. Basal cortical and hippocampal extracellular acetylcholine levels, measured 18 h after the last metrifonate treatment, were about 15 and two folds higher, respectively, than in control and tacrine-treated rats. A challenge with metrifonate further increased cortical and hippocampal acetylcholine levels by about three and four times, respectively. Basal extracellular acetylcholine levels, measured 18 h after the last treatment with tacrine were not statistically different from those of the control rats. A challenge with tacrine increased cortical and hippocampal extracellular acetylcholine levels by about four and two times. A 75% inhibition of cholinesterase activity was found 18 h after the last metrifonate administration, while only a 15% inhibition was detectable 18 h after the last tacrine administration. The challenge with metrifonate or tacrine resulted in 90 and 80% cholinesterase inhibition, respectively. These results demonstrate that in aging rats a subchronic treatment with metrifonate results in a long-lasting, cholinesterase inhibition, and a persistent increase in acetylcholine extracellular levels which compensate for the age-associated cholinergic hypofunction. Metrifonate is therefore a potentially useful agent for the cholinergic deficit accompanying Alzheimer's disease.