In apoptosis induced by Reaper in Drosophila, as well as in a number of other systems, it has been suggested that the increased synthesis of ceramide might be a consequence of the activation of the caspase/ICE (Interleukin-1beta converting enzyme) protease pathway involved in cell death, implying that ceramide generation might often be the result rather than the cause of apoptosis. WEHI 231 B cells have previously been shown to undergo apoptosis following exposure to exogenous ceramide and to produce increased amounts of ceramide in response to anti-IgM crosslinking. We show here that in WEHI 231 cells a peptide inhibitor of caspase activity blocks cell death in response to both anti-IgM and exogenous ceramide. However, the induction of ceramide synthesis by WEHI 231 cells in response to anti-IgM crosslinking is not blocked by this peptide. These results indicate that antigen receptor induced ceramide generation in WEHI 231 cells does not require caspase activation, and support the view that ceramide generation in immature B cells may be the cause rather than the consequence of activation of the caspase dependent death pathway.