The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.