Acquisition of chemoresistance in a human ovarian carcinoma cell is linked to a defect in cell cycle control

Int J Cancer. 1998 Nov 9;78(4):454-63. doi: 10.1002/(sici)1097-0215(19981109)78:4<454::aid-ijc11>3.0.co;2-6.

Abstract

Chemoresistance is a major concern in cancer erradication; it involves various mechanisms, including defects in the apoptosis program induced by anticancer drugs. In order to further explore the mechanisms underlying the development of chemoresistance in ovarian carcinoma after cisplatin treatment, we established an in vitro model, mimicking a clinical protocol of administration of cisplatin. Therefore, IGROV1 ovarian carcinoma cells were exposed for 2 hr to the drug and allowed to recover for several weeks; this way of exposure was reiterated with escalating doses. We followed changes in cytotoxicity of the drug, cell cycle kinetics and long-term survival of cells after cisplatin treatment, and found that resistance to cisplatin was not associated with altered apoptosis pathway, since both cisplatin sensitive and resistant cells underwent apoptosis in a similar way. Acquisition of resistance to cisplatin was associated with the ability of the treated cells to progress through the cell cycle beyond the G1/S checkpoint; although most cells died by apoptosis, a few surviving cells proliferated and recolonized the cultures. Compared to sensitive cells, the chemoresistant variants were able to override the G1/S checkpoint whatever the dose, and the recurrent cells recolonized the cultures much faster. Analysis of alterations in gene expression suggests that the defect in cell cycle regulation could take place at the level of the cdk inhibitor p21(CIP1/WAF1).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / genetics
  • Carcinoma / drug therapy*
  • Carcinoma / genetics
  • Carcinoma / pathology
  • Cell Cycle / drug effects
  • Cell Cycle / genetics
  • Cisplatin / pharmacology*
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins / genetics
  • Drug Resistance, Neoplasm / genetics*
  • Female
  • Humans
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / pathology
  • Tumor Cells, Cultured
  • Tumor Suppressor Protein p53 / genetics

Substances

  • Antineoplastic Agents
  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • Cyclins
  • Tumor Suppressor Protein p53
  • Cisplatin