Phytochromes and photomorphogenesis in Arabidopsis

Philos Trans R Soc Lond B Biol Sci. 1998 Sep 29;353(1374):1445-53. doi: 10.1098/rstb.1998.0300.

Abstract

Plants have evolved exquisite sensory systems for monitoring their light environment. The intensity, quality, direction and duration of light are continuously monitored by the plant and the information gained is used to modulate all aspects of plant development. Several classes of distinct photoreceptors, sensitive to different regions of the light spectrum, mediate the developmental responses of plants to light signals. The red-far-red light-absorbing, reversibly photochromic phytochromes are perhaps the best characterized of these. Higher plants possess a family of phytochromes, the apoproteins of which are encoded by a small, divergent gene family. Arabidopsis has five apophytochrome-encoding genes, PHYA-PHYE. Different phytochromes have discrete biochemical and physiological properties, are differentially expressed and are involved in the perception of different light signals. Photoreceptor and signal transduction mutants of Arabidopsis are proving to be valuable tools in the molecular dissection of photomorphogenesis. Mutants deficient in four of the five phytochromes have now been isolated. Their analysis indicates considerable overlap in the physiological functions of different phytochromes. In addition, mutants defining components acting downstream of the phytochromes have provided evidence that different members of the family use different signalling pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Arabidopsis / radiation effects*
  • Genes, Plant
  • Light
  • Mutation
  • Photobiology
  • Photosynthetic Reaction Center Complex Proteins / radiation effects
  • Phytochrome / genetics
  • Phytochrome / radiation effects*
  • Signal Transduction / radiation effects

Substances

  • Photosynthetic Reaction Center Complex Proteins
  • Phytochrome