To determine if a specific pathogenic threshold of plasma viral RNA could be defined irrespective of virus strain, RNA levels in the plasma of more than 50 infected rhesus macaques (Macaca mulatta) were measured. Animals were inoculated intravenously with either simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV) strains of known pathogenic potential (SIV8980, SIVsmm-3, SIVmac32H/J5, SIVmac32H/1XC, reverse transcriptase-SHIV, SHIV89.6p) or with attenuated strains (SHIVW6.1D, SHIVsf13, SHIVhan-2, SIVmacDeltanef, SHIVsf33). In animals inoculated with nonpathogenic strains, shortly after the primary peak of viremia viral RNA levels declined and remained below 10(4) RNA equivalents/ml of plasma between 6 and 12 weeks postinoculation. Animals infected with documented pathogenic strains maintained viral RNA levels higher than 10(5) RNA equivalents/ml of plasma. In animals infected with strains with low virulence, a decline in plasma RNA levels was observed, but with notable individual variation. Our results demonstrate that the disease-causing potential was predicted and determined by a threshold plasma virus load which remained greater than 10(5) RNA equivalents/ml of plasma 6 to 12 weeks after inoculation. A threshold virus load value which remained below 10(4) RNA equivalents/ml of plasma was indicative of a nonpathogenic course of infection.