A computed tomography scan assessment of regional lung volume in acute lung injury. The CT Scan ARDS Study Group

Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1644-55. doi: 10.1164/ajrccm.158.5.9802003.

Abstract

The lobar and cephalocaudal distribution of aerated and nonaerated lung and of PEEP-induced alveolar recruitment is unknown in acute lung injury (ALI). Dimensions of the lungs and volumes of aerated and nonaerated parts of each pulmonary lobe were measured using a computerized tomographic quantitative analysis and compared between 21 patients with ALI and 10 healthy volunteers. Distribution of PEEP-induced alveolar recruitment along the anteroposterior and cephalocaudal axis and influence of the resting volume of nonaerated lower lobes were also assessed. Anteroposterior and transverse dimensions of the lungs of the patients were similar to those of healthy volunteers, whereas cephalocaudal dimensions were reduced by more than 15%. Total lung volume (aerated plus nonaerated lung) was reduced by 27%. Volumes of upper and lower lobes were 99 and 48% of normal values. In addition to an anteroposterior gradient in the distribution of aerated and nonaerated areas, a cephalocaudal gradient was also observed. Nonaerated areas were predominantly found in juxtadiaphragmatic regions. PEEP-induced alveolar recruitment was more pronounced in nondependent than in dependent regions and in cephalad than in caudal regions. A significant correlation between resting volume of nonaerated lower lobes and regional PEEP-induced alveolar recruitment was observed. In ALI, loss of lung volume involves predominantly lower lobes. The thorax shortens along its cephalocaudal axis. PEEP-induced alveolar recruitment predominates in nondependent and cephalad lung regions and is inversely correlated with the resting volume of nonaerated lung.

Publication types

  • Comparative Study

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Analysis of Variance
  • Carbon Dioxide / blood
  • Carbon Dioxide / metabolism
  • Diaphragm / physiopathology
  • Female
  • Humans
  • Lung / diagnostic imaging*
  • Lung / physiopathology
  • Male
  • Middle Aged
  • Positive-Pressure Respiration
  • Pulmonary Alveoli / diagnostic imaging
  • Pulmonary Alveoli / physiopathology
  • Pulmonary Atelectasis / diagnostic imaging
  • Pulmonary Atelectasis / physiopathology
  • Pulmonary Ventilation / physiology
  • Respiratory Dead Space / physiology
  • Respiratory Distress Syndrome / diagnostic imaging*
  • Respiratory Distress Syndrome / physiopathology
  • Respiratory Distress Syndrome / therapy
  • Respiratory Mechanics / physiology
  • Thorax / physiopathology
  • Tidal Volume / physiology
  • Tomography, X-Ray Computed*
  • Total Lung Capacity / physiology

Substances

  • Carbon Dioxide