Cyclosporine A (CsA) is an immunosuppressive agent that also causes hypertension. The effect of CsA on vascular responses was determined in Sprague-Dawley rats and isolated rat aortic rings. Male rats weighing 250 to 300 g were given either CsA (25 mg. kg-1. d-1) in olive oil or vehicle by intraperitoneal injection for 7 days. CsA administration produced a 42% increase (P<0.001) in mean arterial pressure (MAP) that reached a plateau after 3 days. Conversely, the levels of both nitrate/nitrite, metabolites of nitric oxide (NO), and cGMP, which mediates NO action, decreased by 50% (P<0.001) and 35% (P<0.001), respectively, in the urine. Thoracic aortic rings from rats treated with CsA and precontracted with endothelin (10(-9) mol/L) showed a 35% increase (P<0.001) in tension, whereas endothelium-dependent relaxation induced by acetylcholine (ACh, 10(-9) mol/L) was inhibited 65% (P<0.001) compared with that in untreated rats. This response was similar to that of endothelium-denuded aortic rings from untreated rats in which ACh-induced relaxation was completely abolished (P<0.001), but relaxation induced by S-nitroso-N-acetylpenicillamine (SNAP, 10(-8) mol/L) was unaffected (P<0.001). ACh-induced formation of both nitrate/nitrite and cGMP by both denuded and CsA-treated aortic rings was inhibited 95% (P<0.001) and 65% (P<0.001), respectively, compared with intact aortic rings. The effects of CsA were reversed both in vivo and in vitro by pretreatment with L-arginine (10 mg. kg-1. d-1 IP), the precursor of NO. There were no changes in MAP and tension in rats treated with L-arginine alone. In summary, CsA inhibits endothelial NO activity, with resulting increases in MAP and tension, and this inhibition can be overcome by parenteral administration of L-arginine.