Titin, a giant muscle protein, forms filaments that span half of the sarcomere and cover, along their length, quite diversified functions. The region of titin located in the sarcomere I-band is believed to play a major rôle in extensibility and passive elasticity of muscle. In the I-band, the titin sequence contains tandem immunoglobulin-like (Ig) modules intercalated by a potentially non-globular region. By a combined approach making use of small angle X-ray scattering and nuclear magnetic resonance techniques, we have addressed the questions of what are the average mutual orientation of poly-Igs and the degree of flexibility around the domain interfaces. Various recombinant fragments containing one, two and four titin I-band tandem domains were analysed. The small-angle scattering data provide a picture of the domains in a mostly extended configuration with their long axes aligned head-to-tail. There is a small degree of bending and twisting of the modules with respect to each other that results in an overall shortening in their maximum linear dimension compared with that expected for the fully extended, linear configurations. This shortening is greatest for the four module construct ( approximately 15%). 15N NMR relaxation studies of one and two-domain constructs show that the motions around the interdomain connecting regions are restricted, suggesting that titin behaves as a row of beads connected by rigid hinges. The length of the residues in the interface seems to be the major determinant of the degree of flexibility. Possible implications of our results for the structure and function of titin in muscles are discussed.
Copyright 1998 Academic Press