CD23, the low affinity IgE receptor, is up-regulated on the surface of IL-4-treated B cells and monocytes and is immediately proteolytically processed, releasing soluble fragments of CD23. Here, we report that inhibitors of the p38 mitogen-activated kinase (p38 MAPK), SK&F 86002 or the more selective inhibitor, SB 203580, reduce the levels of soluble CD23 formed by IL-4-stimulated human monocytes or the human monocytic cell line, U937. In contrast to compounds such as the metalloprotease inhibitor batimastat ([4-(N-hydroxyamino)-2-(R)-isobutyl-3-(S)-(2-thiophenethiomethyl)s uccinyl]-(S)-phenylalanine-N-methylamide, sodium salt), p38 MAPK inhibitors do not directly inhibit proteolytic processing of CD23. Further, evaluation of surface intact CD23 (iCD23) by flow cytometry demonstrated that SK&F 86002 and SB 203580 reduced the surface expression of iCD23 in a concentration-dependent fashion, while batimastat increased the surface expression of iCD23. The decrease in surface iCD23 was accompanied by a decrease in total cell-associated CD23 protein levels but not CD23 mRNA. IL-4 induced a late (>4-h) increase in p38 MAPK activity and corresponding activation of its substrate MAPKAPK-2. This activation was blocked by addition of SB 203580 before IL-4 induction, in parallel with the inhibition of CD23 expression. Modulation of CD23 by antibodies has been shown to alleviate the symptoms of murine collagen-induced arthritis, implicating CD23 as an important proinflammatory agent. These data show that in addition to the known cytokine inhibitory actions of SK&F 86002 and SB 203580, they also confer an additional potential anti-inflammatory activity through modulation of CD23 expression.