Proteolytic degradation of extracellular matrix is a critical step in tumour invasion and metastasis. To examine the role of trypsin in tumour dissemination, we cloned two variants (S4 and R3 cells) from STKM-1, a trypsinogen 1-producing diffuse gastric cancer cell line. Western blot analysis with antitrypsin antibody showed that 26 and 24 kDa proteins were highly detected in S4 conditioned medium (CM) in comparison to R3 CM. In addition to the 26 and 24 kDa proteins, 25 and 23 kDa bands, which correspond to enterokinase-activated trypsin, were found only in S4 CM. When the CMs of the two clones were treated with enterokinase, the 25 and 23 kDa trypsin activities in S4 CM were effectively increased as compared with R3 CM. When the two clones were inoculated intraperitoneally (i.p.) into nude mice, S4 cells strongly invaded the liver, pancreas and peritoneum and killed the hosts more rapidly than R3 cells: the 50% survival time was 50 days for S4 and 82 days for R3 cells. These results suggest that trypsin production is associated with the invasive growth of STKM-1 gastric cancer cells.