-Hydrochlorothiazide and indapamide are thought to exert their hypotensive efficacy through a combined vasodilator and diuretic effect, but in vivo evidence for a direct vascular effect is lacking. The presence and mechanism of a direct vascular action of hydrochlorothiazide in vivo in humans were examined and compared with those of the thiazide-like drug indapamide. Forearm vasodilator responses to infusion of placebo and increasing doses of hydrochlorothiazide (8, 25, and 75 microg. min-1. dL-1) into the brachial artery were recorded by venous occlusion plethysmography. Dose-response curves were repeated after local tetraethylammonium (TEA) administration to determine the role of potassium channel activation and, in patients with the Gitelman syndrome, to determine the role of the thiazide-sensitive Na-Cl cotransporter in the vasodilator effect of hydrochlorothiazide. Vascular effects of hydrochlorothiazide were compared with those of indapamide in both normotensive (mean arterial pressure, 85+/-7 mm Hg) and hypertensive (mean arterial pressure, 124+/-16 mm Hg) subjects. At the highest infusion rate, local plasma concentrations of hydrochlorothiazide averaged 11.0+/-1.6 microg/mL, and those of indapamide averaged 7. 2+/-1.5 microg/mL. In contrast to indapamide, hydrochlorothiazide showed a direct vascular effect (maximal vasodilation, 55+/-14%; P=0. 013), which was inhibited by TEA (maximal vasodilation after TEA, 13+/-10%; P=0.02). The response was not dependent on blood pressure and was similar in patients with Gitelman syndrome, indicating that absence of the Na-Cl cotransporter does not alter the vasodilatory effect of hydrochlorothiazide. The vasodilator effect of hydrochlorothiazide in the human forearm is small and only occurs at high concentrations. The mechanism of action is not mediated by inhibition of vascular Na-Cl cotransport but involves vascular potassium channel activation. In contrast, indapamide does not exert any direct vasoactivity in the forearm vascular bed.