Recent data indicate that the cell surface glycoprotein CD5 functions as a negative regulator of T cell receptor (TCR)-mediated signaling. In this study, we examined the regulation of CD5 surface expression during normal thymocyte ontogeny and in mice with developmental and/or signal transduction defects. The results demonstrate that low level expression of CD5 on CD4(-)CD8(-) (double negative, DN) thymocytes is independent of TCR gene rearrangement; however, induction of CD5 surface expression on DN thymocytes requires engagement of the pre-TCR and is dependent upon the activity of p56(lck). At the CD4(+)CD8(+) (double positive, DP) stage, intermediate CD5 levels are maintained by low affinity TCR-major histocompatibility complex (MHC) interactions, and CD5 surface expression is proportional to both the surface level and signaling capacity of the TCR. High-level expression of CD5 on DP and CD4(+) or CD8(+) (single positive, SP) thymocytes is induced by engagement of the alpha/beta-TCR by (positively or negatively) selecting ligands. Significantly, CD5 surface expression on mature SP thymocytes and T cells was found to directly parallel the avidity or signaling intensity of the positively selecting TCR-MHC-ligand interaction. Taken together, these observations suggest that the developmental regulation of CD5 in response to TCR signaling and TCR avidity represents a mechanism for fine tuning of the TCR signaling response.