Nucleotide variation at the ribosomal protein 49 (rp49) gene region has been studied in 75 lines of Drosophila subobscura belonging to four chromosomal arrangements (Ost, O3+4, O3+4+8, and O3+4+23). The location of the rp49 gene region within the inversion loop differs among heterokaryotypes: it is very close to one of the breakpoints in heterozygotes involving Ost chromosomes, while it is in a more central position in all other heterokaryotypes. The distribution of nucleotide polymorphism in the different arrangements is consistent with a monophyletic origin of the inversions. The data also provide evidence that gene conversion and possibly double crossover are involved in shuffling nucleotide variation among gene arrangements. The analyses reveal that the level of genetic exchange is higher when the region is located in a more central position of the inverted fragment than when it is close to the breakpoints. The pairwise difference distributions as well as the negative values of Tajima's and Fu and Li's statistics further support the hypothesis that nucleotide variation within chromosomal arrangements still reflects expansion after the origin of the inversions. Under the expansion model, we have estimated the time of origin of the studied inversions.