Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2

J Immunol. 1999 Jan 1;162(1):445-52.

Abstract

We have used mice rendered deficient for nitric oxide synthase 2 (NOS2) production to study the role of inducible nitric oxide (NO) in the pathogenesis of allergic airways disease. Using a model with OVA as aeroallergen, we show that the manifestations of disease, including infiltration of inflammatory cells, particularly eosinophils, loss of structural integrity of the airway walls, microvascular leakage, pulmonary edema, and airway occlusion are markedly less severe in the NOS2 mutants than in wild-type animals. Indeed, NOS2-deficiency resulted in a 55-60% reduction in both circulatory and pulmonary eosinophil numbers following aeroallergen treatment, although eosinophil maturation or efflux from the bone marrow was not suppressed. There were no obvious differences in levels of airway hyperreactivity recorded in OVA-treated wild-type and NOS2-deficient mice. Interestingly, the suppression of allergic inflammation was accompanied by marked increases in T cell production of IFN-gamma but not by any obvious reduction in the secretion of either IL-4 or IL-5, nor by major changes in the IgG1 and IgE OVA-specific serum Ig profiles in the mutants. The markedly enhanced production of IFN-gamma in NOS2-/- mice was apparently responsible for the suppression of both eosinophilia and disease, as in vivo depletion of this factor restored allergic pathology in these animals. Our data indicate that NOS2 promotes allergic inflammation in airways via down-regulation of IFN-gamma activity and suggest that inhibitors of this molecule may represent a worthwhile therapeutic strategy for allergic diseases including asthma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal / pharmacology
  • Bronchial Hyperreactivity / enzymology
  • Bronchial Hyperreactivity / etiology
  • Bronchial Hyperreactivity / genetics
  • Bronchoalveolar Lavage Fluid / cytology
  • CD4-Positive T-Lymphocytes / metabolism
  • Cell Differentiation / genetics
  • Cell Movement / immunology
  • Cytokines / physiology
  • Down-Regulation / genetics
  • Eosinophilia / blood
  • Inflammation / etiology
  • Inflammation / genetics
  • Inflammation / immunology
  • Interferon-gamma / antagonists & inhibitors
  • Interferon-gamma / biosynthesis
  • Interferon-gamma / immunology
  • Mice
  • Mice, Knockout
  • Nitric Oxide / blood
  • Nitric Oxide Synthase / deficiency*
  • Nitric Oxide Synthase / genetics*
  • Nitric Oxide Synthase / metabolism
  • Respiratory Hypersensitivity / etiology*
  • Respiratory Hypersensitivity / immunology
  • Respiratory Hypersensitivity / pathology*

Substances

  • Antibodies, Monoclonal
  • Cytokines
  • Nitric Oxide
  • Interferon-gamma
  • Nitric Oxide Synthase