The potential of recombinant human (rh)Flt3 ligand (FL), alone or in combination with other recombinant growth factors, to mobilize peripheral blood precursor cells (PBPCs) was examined in an animal model. Adult outbred New Zealand White rabbits received subcutaneous injections daily for 14 days in a standardized protocol; whole blood cell counts and colony-forming unit-granulocyte/macrophage (CFU-GM) colonies were measured 3 times weekly during the injection period and for an additional observation period of 14 days. Two animals in each group were treated as follows: 200 or 500 microg/kg FL, 10 microg/kg granulocyte colony-stimulating factor (G-CSF), 10 or 75 microg/kg stem cell factor (SCF), 10 microg/kg G-CSF + 500 microg/kg FL, 10 microg/kg G-CSF + 75 microg/kg SCF + 500 microg/kg FL. Both G-CSF and FL induced a sustained and dose-dependent increase in the leukocyte count to a maximum of 5-fold. They were additive in combination, leading to a tenfold increase in white blood cell counts. No consistent pattern was observed for platelet counts or red blood cells. No toxic side effects were seen. Both G-CSF and FL mobilized CFU-GM in a dose-dependent fashion to a 59-fold increase for G-CSF and 116-fold for FL. Maximum mobilization occurred on day 4 with G-CSF and on day 11 with FL. G-CSF + FL in combination acted synergistically, inducing a 503-fold increase of CFU-GM over baseline. The addition of SCF to this combination did not alter leukocyte counts or CFU-GM mobilization. Our results indicate that FL is a potent and safe agent for the mobilization of PB-PCs and is synergistic with G-CSF.