ELAV proteins stabilize deadenylated intermediates in a novel in vitro mRNA deadenylation/degradation system

Genes Dev. 1999 Jan 15;13(2):188-201. doi: 10.1101/gad.13.2.188.

Abstract

We have developed an in vitro mRNA stability system using HeLa cell cytoplasmic S100 extracts and exogenous polyadenylated RNA substrates that reproduces regulated aspects of mRNA decay. The addition of cold poly(A) competitor RNA activated both a sequence-specific deadenylase activity in the extracts as well as a potent, ATP-dependent ribonucleolytic activity. The rates of both deadenylation and degradation were up-regulated by the presence of a variety of AU-rich elements in the body of substrate RNAs. Competition analyses demonstrated that trans-acting factors were required for RNA destabilization by AU-rich elements. The approximately 30-kD ELAV protein HuR specifically bound to RNAs containing an AU-rich element derived from the TNF-alpha mRNA in the in vitro system. Interaction of HuR with AU-rich elements, however, was not associated with RNA destabilization. Interestingly, recombinant ELAV proteins specifically stabilized deadenylated intermediates generated from the turnover of AU-rich element-containing substrate RNAs. These data suggest that mammalian ELAV proteins play a role in regulating mRNA stability by influencing the access of degradative enzymes to RNA substrates.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Antigens, Surface*
  • Base Sequence
  • Binding, Competitive
  • Cell Extracts
  • ELAV Proteins
  • ELAV-Like Protein 1
  • Genes, Viral / genetics
  • Genes, fos / genetics
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics
  • HeLa Cells
  • Humans
  • Kinetics
  • Molecular Weight
  • Mutation
  • Poly A / genetics
  • Poly A / metabolism*
  • Precipitin Tests
  • RNA Processing, Post-Transcriptional*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism*
  • RNA-Binding Proteins / metabolism
  • Recombinant Proteins / metabolism
  • Response Elements / genetics
  • Ribonucleoproteins / genetics
  • Ribonucleoproteins / metabolism*
  • Tumor Necrosis Factor-alpha / genetics

Substances

  • Antigens, Surface
  • Cell Extracts
  • ELAV Proteins
  • ELAV-Like Protein 1
  • ELAVL1 protein, human
  • RNA, Messenger
  • RNA-Binding Proteins
  • Recombinant Proteins
  • Ribonucleoproteins
  • Tumor Necrosis Factor-alpha
  • Poly A
  • Granulocyte-Macrophage Colony-Stimulating Factor
  • Adenosine Triphosphate