Subclones of the human osteosarcoma cell line SaOS-2 were established by transfecting with an expression vector containing the human PTH/PTH-related protein (PTHrP) receptor, and their abilities to support osteoclast-like multinucleated cell (OCL) formation were examined in coculture with mouse or human hemopoietic cells. Of four subclones examined, SaOS-2/4 and SaOS-4/3 bound high levels of [125I]-PTH and produced a significant amount of cAMP in response to PTH. OCLs were formed in response to PTH in the cocultures of mouse bone marrow cells with either SaOS-2/4 cells or SaOS-4/3 cells. Human OCLs were also formed in response to PTH in the coculture of SaOS-4/3 cells and human peripheral blood mononuclear cells. Adding dexamethasone together with PTH greatly enhanced PTH-induced human OCL formation. Like mouse OCLs, human OCLs formed in response to PTH were tartrate-resistant acid phosphatase positive, expressed abundant calcitonin receptors and vitronectin receptors, and formed resorption pits on dentine slices. Other osteotropic factors such as 1alpha,25-dihydroxyvitamin D3, prostaglandin E2, and interleukin 6 plus soluble interleukin 6 receptors failed to induce mouse and human OCLs in cocultures with SaOS-4/3 cells. Both mouse and human OCL formation supported by SaOS-4/3 cells were inhibited by either adding an antibody against macrophage-colony stimulating factor or adding granulocyte/macrophage-colony stimulating factor. Thus, it is likely that human and mouse OCL formation supported by SaOS-4/3 cells are similarly regulated. These results indicate that the target cells of PTH for inducing osteoclast formation are osteoblast/stromal cells but not osteoclast progenitor cells in the coculture. This coculture model will be useful for investigating the abnormalities ofosteoclast differentiation and function in human metabolic bone diseases.