Background and purpose: Oxidative stress has been postulated to account for delayed neuronal death due to ischemia/reperfusion. We investigated cerebral formation of malondialdehyde as an index of lipid peroxidation in relation to different sources of reactive oxygen species in patients undergoing carotid endarterectomy.
Methods: In 25 patients undergoing carotid endarterectomy, jugular venous-arterial concentration differences of brain metabolites, malondialdehyde, plasma total antioxidant status, and soluble P-selectin and L-selectin were measured. A carotid artery shunt (n=5) was placed only after complete loss of somatosensory evoked potentials, indicating a focal cerebral blood flow <15 mL/min per 100 g.
Results: As an indication of cerebral lipid peroxidation, jugular venous-arterial malondialdehyde concentration differences were significantly enhanced before reperfusion, and an additional rise was observed 15 minutes after reperfusion. Plasma total antioxidant status significantly decreased during carotid artery occlusion only in patients with carotid artery shunt. This decrease was matched by cerebral formation of adenosine, hypoxanthine, and nitrite/nitrate. While jugular venous-arterial concentration differences of soluble P-selectin showed changes similar to those of malondialdehyde, the concentration difference for soluble L-selectin was enhanced exclusively at 15 minutes after reperfusion.
Conclusions: Short-term incomplete cerebral ischemia/reperfusion significantly enhanced cerebral lipid peroxidation, as indicated by malondialdehyde formation. The generation of reactive oxygen species by xanthine oxidase or nitric oxide metabolism might be involved in the induction of lipid peroxidation. The additional rise in cerebral release of malondialdehyde was found to coincide with a significant activation of polymorphonuclear leukocytes across the cerebral circulation.