Anoxic and hypoxic immature rat model for measurement of monoamine using in vivo microdialysis

Brain Res Brain Res Protoc. 1999 Jan;3(3):252-6. doi: 10.1016/s1385-299x(98)00046-4.

Abstract

The immature brain is considered relatively resistant to anoxia and ischemia. Although hypoxia without ischemia has not been considered to produce brain damage in immature rats as well as in adult rats (S. Levine, Anoxic-ischemic encephalopathy in rats, Am. J. Pathol., 36 (1960) 1-17 [8]; D.E. Levy, J.B. Brieley, D.G. Silverman, F. Plum, Brief hypoxia-ischemia initially damages cerebral neurons, Arch. Neurol., 32 (1975) 450-456 [9]; J.E. Rice, R.C. Vannucci, J.B., Brieriey, The influence of immaturity on hypoxic-ischemic brain damage in rat, Ann. Neurol., 9 (1981) 131-141 [14]), hypoxia in postnatal period is possible to cause a functional brain damage (T. Hender, P. Lundborg, Regional changes in monoamine synthesis in the developing rat brain during hypoxia, Acta. Physiol. Scand., 106 (1979) 139-143 [3]; W. Ihle, J. Gross, R. Moller, Effect on chronic postnatal hypoxia on dopamine uptake by synaptosomes from striatum of adult rats, Biomed. Biochem. Acta., 44 (1985) 433-437 [7]; A. Lun, J. Gross, M. Beyer, H.D. Fischer, C. Wustmann, J. Schmidt, K. Hecht, The vulnerable period of perinatal hypoxia with regard to dopamine release and behavior in adult rats, Biomed. Biochem. Acta., 45 (1986) 619-627 [10]). Using microdialysis, we studied the anoxic or hypoxic effect on catecholamine metabolism in immature rat brain by measuring extracellular concentrations of norepinephrine (NE), dopamine (DA), and its metabolites and also 5-hydroxyindole-3-acetic acid (5-HIAA), the serotonin metabolite. DA is a well established excitatory neurotransmitter (R.C. Vannucci, Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage, Pediatr. Res., 27 (1990) 317-326 [16]), and in the previous report using hypoxic 7-day-old rat pups increase of DA was not detected without additional stimulations (K. Gordon, D. Johnston, M.V. Robinson, T.E. Statman, J.B. Becker, F. Silverstein, Transient hypoxia alters striatal catecholamine metabolism in immature brain: An in vivo microdialysis study, J. Neurochem., 54 (1990) 605-611 [2]). Whereas recently in newborn piglets, hypoxic hypoxia produced increase of extracellular DA (C.-C. Huang, N.S. Lajevardi, O. Tammela, A. Pastuszko, Relationship of extracellular dopamine in striatum of newborn piglets to cortical oxygen pressure, Neurochem. Res., 19 (1994) 649-655 [6]; Olano, M., Song, D., Murphy, S., Wilson, D. F. and Pastuszko, A., Relationships of dopamine, cortical oxygen pressure, and hydroxyl radicals in brain of newborn piglets during hypoxia and posthypoxic recovery, J. Neurochem., 65 (1995) 1205-1212 [13]). We consider that hypoxic ischemic brain damage of human newborns that we can treat is a damage, which does not show overt neuropathological changes. We therefore tried to show that transient anoxia and hypoxia caused biochemical alteration if the exposure did not produce marked morphological changes. This rodent model is adequate to study perinatal asphyxia and alteration of monoamine level could be useful for evaluation of brain damage, even if it is not detected histologically.

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Animals
  • Animals, Newborn
  • Brain / growth & development
  • Brain Chemistry*
  • Brain Ischemia / complications
  • Chromatography, High Pressure Liquid
  • Corpus Striatum / metabolism*
  • Dopamine / deficiency
  • Dopamine / metabolism*
  • Hydroxyindoleacetic Acid / metabolism*
  • Hypoxia / metabolism*
  • Hypoxia, Brain / metabolism*
  • Microdialysis* / instrumentation
  • Norepinephrine / metabolism*
  • Rats
  • Rats, Wistar
  • Serotonin / metabolism
  • Synaptosomes / metabolism

Substances

  • 3,4-Dihydroxyphenylacetic Acid
  • Serotonin
  • Hydroxyindoleacetic Acid
  • Dopamine
  • Norepinephrine