The ETS domain transcription factor PU.1 is necessary for the development of monocytes and regulates, in particular, the expression of the monocyte-specific macrophage colony-stimulating factor (M-CSF) receptor, which is critical for monocytic cell survival, proliferation, and differentiation. The bZIP transcription factor c-Jun, which is part of the AP-1 transcription factor complex, is also important for monocytic differentiation, but the monocyte-specific M-CSF receptor promoter has no AP-1 consensus binding sites. We asked the question of whether c-Jun could promote the induction of the M-CSF receptor by collaborating with PU.1. We demonstrate that c-Jun enhances the ability of PU.1 to transactivate the M-CSF receptor promoter as well as a minimal thymidine kinase promoter containing only PU.1 DNA binding sites. c-Jun does not directly bind to the M-CSF receptor promoter but associates via its basic domain with the ETS domain of PU.1. Consistent with our observation that AP-1 binding does not contribute to c-Jun coactivation is the observation that the activation of PU.1 by c-Jun is blocked by overexpression of c-Fos. Phosphorylation of c-Jun by c-Jun NH2-terminal kinase on Ser-63 and -73 does not alter the ability of c-Jun to enhance PU.1 transactivation. Activated Ras enhances the transcriptional activity of PU.1 by up-regulating c-Jun expression without changing the phosphorylation pattern of PU.1. The activation of PU.1 by Ras is blocked by a mutant c-Jun protein lacking the basic domain. The expression of this mutant form of c-Jun also completely blocks 12-O-tetradecanoylphorbol-13-acetate-induced M-CSF receptor promoter activity during monocytic differentiation. We propose therefore that c-Jun acts as a c-Jun NH2-terminal kinase-independent coactivator of PU.1, resulting in M-CSF receptor expression and development of the monocytic lineage.