Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

21 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
State-of-the-art MR Imaging for Thoracic Diseases.
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. Tanaka Y, et al. Among authors: obama y. Magn Reson Med Sci. 2022 Mar 1;21(1):212-234. doi: 10.2463/mrms.rev.2020-0184. Epub 2021 Apr 29. Magn Reson Med Sci. 2022. PMID: 33952785 Free PMC article. Review.
Computed DWI MRI Results in Superior Capability for N-Stage Assessment of Non-Small Cell Lung Cancer Than That of Actual DWI, STIR Imaging, and FDG-PET/CT.
Ohno Y, Yui M, Takenaka D, Yoshikawa T, Koyama H, Kassai Y, Yamamoto K, Oshima Y, Hamabuchi N, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Ohno Y, et al. Among authors: obama y. J Magn Reson Imaging. 2023 Jan;57(1):259-272. doi: 10.1002/jmri.28288. Epub 2022 Jun 26. J Magn Reson Imaging. 2023. PMID: 35753082
Overview of MRI for pulmonary functional imaging.
Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Ohno Y, et al. Among authors: obama y. Br J Radiol. 2022 Apr 1;95(1132):20201053. doi: 10.1259/bjr.20201053. Epub 2021 Feb 2. Br J Radiol. 2022. PMID: 33529053 Free PMC article. Review.
Machine learning for lung texture analysis on thin-section CT: Capability for assessments of disease severity and therapeutic effect for connective tissue disease patients in comparison with expert panel evaluations.
Ohno Y, Aoyagi K, Takenaka D, Yoshikawa T, Fujisawa Y, Sugihara N, Hamabuchi N, Hanamatsu S, Obama Y, Ueda T, Hattori H, Murayama K, Toyama H. Ohno Y, et al. Among authors: obama y. Acta Radiol. 2022 Oct;63(10):1363-1373. doi: 10.1177/02841851211044973. Epub 2021 Oct 12. Acta Radiol. 2022. PMID: 34636644
21 results